lunes, 8 de noviembre de 2010

El blog de Esther: HCS1

El blog de Esther: HCS1: "Accede a las entradas con los recursos más actuales.

POLINOMIOS: BINOMIO DE NEWTON

El binomio de Newton sirve para calcular potencias de binomios y su formula es:

(a+b)^n=\displaystyle\sum_{i=0}^{n} \dbinom{n}{i} a^{n-i}\cdot b^i

Si se trata de una diferencia la fórmula es:

 (a-b)^n=\displaystyle\sum_{i=0}^{n} (-1)^i \dbinom{n}{i} a^{n-i}\cdot b^i

Veamos una par de ejemplos sencillos:

(2x+3)^3= \dbinom{3}{0} (2x)^3 \cdot 3^0+\dbinom{3}{1} (2x)^2 \cdot 3^1+\dbinom{3}{2} (2x)^1 \cdot 3^2+\dbinom{3}{3} (2x)^0 \cdot 3^3

Calculando potencias y números combinatorios (triángulo de Tartaglia-Pascal) nos queda:

8x^3+36x^2+54x+27

Ejemplo de resta:

(3x-2y)^4=(-1)^0\cdot \dbinom{4}{0} (3x)^4 \cdot(2y)^0 +(-1)^1\cdot \dbinom{4}{1} (3x)^3 \cdot(2y)^1+(-1)^2\cdot \dbinom{4}{2} (3x)^2 \cdot(2y)^2+(-1)^3\cdot \dbinom{4}{3} (3x)^1 \cdot(2y)^3+ (-1)^4\cdot \dbinom{4}{4} (3x)^0 \cdot(2y)^4

Calculando potencias y números combinatorios:

 16y^4-96y^3 x+216y^2x^2-216 yx^3+81x^4

El desarrollo del binomio de Newton puede complicarse si aparecen expresiones fraccionarias y hay que simplificarlas. Por ejemplo:

\left ( \dfrac{2x}{3}+\dfrac{9}{2x^2} \right )^4

Intentadlo.

No hay comentarios:

Publicar un comentario